8-bit Proprietary Microcontroller

CMOS

F^{2} MC-8L MB89143A/144A Series

MB89143A/144A

- DESCRIPTION

The MB89143A/144A has been developed as a general-purpose version of the $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{~L}^{*}$ family consisting of proprietary 8 -bit, single-chip microcontrollers.
In addition to a compact instruction set, the microcontrollers contain peripheral functions such as dual-clock control system, five operating speed control stages, timers, a serial interface, an A/D converter, buzzer output, high voltage driver, watch prescaler, and an external interrupt. The MB89143A/144A is applicable to a wide range of applications from welfare products to industrial equipment.

* F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- Minimum execution time: $0.50 \mu \mathrm{~s} / 8.0-\mathrm{MHz}$ oscillation
- Interrupt servicing time: $4.50 \mu \mathrm{~s} / 8.0-\mathrm{MHz}$ oscillation
- F^{2} MC-8L family CPU core

Instruction set optimized for controllers

- Multiplication and division instructions

16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.

- Dual-clock control system
- High-voltage ports: 24 channel

PACKAGE

(DIP-64P-M01)

MB89143A/144A

(Continued)

- Two types of timers

8/16-bit timer/counter (also usable as two 8-bit timers)
21-bit time-base timer

- One 8-bit serial interface

Switchable transfer direction allows comunication with various equipment.

- 8-bit A/D converter: 8 channels

Successive approximation type

- External interrupt: 2 channels

Two channels are independent and capable of wake-up from low-power consumption modes. (Rising edge/ falling edge/both edges selectability) -0.3 V to +7.0 V can be applied to INT1 (N-ch open-drain)

- Low-power consumption modes Subclock mode (The main clock stops, and the device operates at the subclock.)
Watch mode (Only the watch prescaler is operating.)
Stop mode (Oscillation stops to minimize the current consumption.)
Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)
- Watch prescaler
- Buzzer output
- Watchdog reset, reset output, and power-on reset functions

PRODUCT LINEUP

Part number Parameter	MB89143A	MB89144A	MB89144/5/6	MB89P147	MB89PV140
Classification	Mass production products (mask ROM products)			One-time PROM product	Piggyback/evaluation product (for evaluation and development)
ROM size	$8 \mathrm{~K} \times 8$ bits	$12 \mathrm{~K} \times 12$ bits	12/16/24 K $\times 8$ bits	$32 \mathrm{~K} \times 8$ bits Internal PROM	$32 \mathrm{~K} \times 8$ bits External ROM (Piggyback)
RAM size	256×8 bits		$\begin{gathered} 256 / 512 / 768 \\ \times 8 \text { bits } \end{gathered}$	$1 \mathrm{~K} \times 8$ bits Internal	
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: $1,8,16$ bits Minimum execution time: $0.5 \mu \mathrm{~s} / 8 \mathrm{MHz}$ to $8.0 \mu \mathrm{~s} / 8 \mathrm{MHz}, 61 \mu \mathrm{~s} / 32.768 \mathrm{kHz}$ Interrupt processing time: $4.5 \mu \mathrm{~s} / 8 \mathrm{MHz}$ to $72.0 \mu \mathrm{~s} / 8 \mathrm{MHz}, 562.5 \mu \mathrm{~s} / 32.768 \mathrm{kHz}$ Note: The above times change according to the gear function.				
Ports	High-voltage output ports (P-ch open-drain): Buzzer output 24 (P40 to P47, P50 to P57, and P60 to P67) (P-ch open-drain, high-voltage): 1 Output ports (CMOS): 4 (P20 to P23) Input ports (CMOS): 2 (P70 and P71, function as X0A and X1A pins when dual-clock system is used.) I/O ports (CMOS): 23 (P00 to P07, P10 to P17, P30, and P32 to P37) I/O port (N-channel open-drain): 1 (P31) Total:				
Time-base timer	Capable of generating four different intervals (at $8.0-\mathrm{MHz}$ oscillation): $0.26 \mathrm{~ms}, 0.51 \mathrm{~ms}, 1.02 \mathrm{~ms}$, and 0.524 s				
8/16-bit timer counter	8/16-bit timer operation (Operating clock, internal clock, external trigger) 8/16-bit event counter operation (Rising edge/falling edge/both edges selectability)				
8-bit Serial I/O	8 bitsLSB first/MSB first selectabilityOne clock selectable from four transfer clocks(one external shift clock, three internal shift clocks: $4,8,16$ system clock cycles)				
A/D converter	8 -bit resolution $\times 8$ channels A/D conversion mode (with conversion time of $22 \mu \mathrm{~s} / 8 \mathrm{MHz}$, and highest gear speed) Continuous activation by external activation cabable		10-bit resolution $\times 12$ channels A/D conversion mode (with conversion time of $16.5 \mathrm{~ms} /$ 8 MHz , and highest gear speed) Sense mode (with conversion time of $9.0 \mu \mathrm{~s} / 8 \mathrm{MHz}$, and highest gear speed) Continuous activation enabled by external activation capable		
External interrupt	2 independent channels (edge selection, interrupt vector, source flag) Rising edge/falling edge/both edges selectability Built-in analog noise canceller Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)				
Buzzer output	1.95 or 3.91 kHz selectable (at $8-\mathrm{MHz}$ oscillation) Output to a high-voltage pin				

MB89143A/144A

(Continued)

$\begin{aligned} & \text { Part number } \\ & \hline \text { Parameter } \end{aligned}$	MB89143A	MB89144A	MB89144/5/6	MB89P147	MB89PV140
Watchdog reset	Internal reset in 524 to 1049 ms (at 8 MHz oscillation) when the program runway occurs				
8-bit PWM timer	None		8-bit timer operation/8-bit resolution PWM operation		
12-bit MPG timer	None		12-bit resolution PWM operation/reload timer operation/ PPG operation		
Standby mode	Sleep mode, stop mode, and watch mode				
Process	CMOS				
Package	DIP-64P-M01 \quad FPT-64P-M06				$\begin{aligned} & \text { MDP-64C-P02 } \\ & \text { MQP-64C-P01 } \end{aligned}$
EPROM for use					MBM27C256A-20
Operating voltage*	4.0 V to 6.0 V		2.7 V to 6.0 V		

*: Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")
PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89143A MB89144A	MB89P147	MB89PV140
DIP-64P-M01	\bigcirc	\bigcirc	\times
FPT-64P-M06	\times	\bigcirc	\times
MDP-64C-P02	\times	\times	\bigcirc
MQP-64C-P01	\times	\times	\bigcirc

\bigcirc : Available \times : Not available
*:Under examination for development
Note: For more information about each package, see section "■ Package Dimensions."

MB89143A/144A

DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

- On the MB89143A/144A, the upper half of the register bank cannot be used.
- The stack area, etc., is set at the upper limit of the RAM.

2. Functions

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following point:

- The A/D converter in the MB89143A/144A is an 8-bit resolution type. The MB89143A/144A contains neither the 8 -bit PWM timer nor the 12 -bit MPG timer.

3. Current Consumption

- In the case of the MB89PV140, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.

However, the current consumption in sleep/stop modes is the same. (For more information, see section "■ Electrical Characteristics".)

4. Mask Options

Functions that can be selected as options and how to designate these options vary by the product. Before using options check section "■ Mask Options."

Take particular care on the following point:

- A pull-up resistor option is not provided for the MB89PV140.

MB89143A/144A

PIN ASSIGNMENT

- When used as general-purpose ports, the P70/X0A and P71/X1A functions as input-only ports.
(DIP-64P-M01)

MB89143A/144A

PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Function
30	X0	A	Main clock oscillator pins
31	X1		Use a crystal oscillator.
29	MODA	B	Operating mode selection pin Connect directly to Vss in normal operation.
28	$\overline{\mathrm{RST}}$	C	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L". This pin is with a noise canceller.
54 to 61	P07/AN7 to P00/ANO	F	General-purpose I/O ports These ports are a hysteresis input type. Also serve as an analog input.
46	P17/ADST	H	General-purpose I/O port This port is a hysteresis input type. Also serves as an A/D converter external activation.
47 to 53	P16 to P10	H	General-purpose I/O ports These ports are a hysteresis input type.
34, 33	$\begin{aligned} & \text { P70/X0A, } \\ & \text { P71/X1A } \end{aligned}$	J	Selectable either general-purpose input ports or the subclock oscillator pins by the mask option. These ports are a hysteresis input type when used as general-purpose input ports.
$\begin{gathered} 27, \\ 35 \text { to } 37 \end{gathered}$	P23 to P20	D	General-purpose output ports
$\begin{aligned} & 38, \\ & 39 \end{aligned}$	$\begin{aligned} & \text { P37, } \\ & \text { P36 } \end{aligned}$	H	General-purpose I/O ports These ports are a hysteresis input type.
40	P35/EC		General-purpose I/O port This port is a hysteresis input type. Also serves as the external clock input for the 8/16-bit timer/counter.
41	P34/SI		General-purpose I/O port This port is a hysteresis input type. Also serves as the serial data input for the 8 -bit serial interface.
42	P33/SO		General-purpose I/O port This port is a hysteresis input type. Also serves as the serial data output for the 8 -bit serial interface.
43	P32/SCK		General-purpose I/O port This port is a hysteresis input type. Also serves as the serial transfer clock for the 8 -bit serial interface.

[^0](Continued)

MB89143A/144A

(Continued)

Pin no.	Pin name	Circuit type	Function
SDIP*	P31/INT1	E	General-purpose I/O port This port is an N-ch open-drain outupt and hysteresis input type. Also serves as an external interrupt. The interrupt input is a hysteresis input type and with a built-in noise canceller.
44	P30/INT0	I	General-purpose I/O port This port is a hysteresis input type. Also serves as an external interrupt. The interrupt input is a hysteresis input type and with a built-in noise canceller.
45	BZ	G	Buzzer output-only pin P-ch high-voltage open-drain output port
1	P47 to P40, P57 to P50, P67 to P60	G	P-ch high-voltage open-drain output port
19 11 to $26, ~ 18, ~$ 2 to 9	N.C.	-	Be sure to leave them open.
10	Vcc	-	Power supply pin Also serves as an A/D converter power supply.
64	Vss	-	Power supply (GND) pin
32	AVR	-	A/D converter reference voltage input pin
63	AVss	-	A/D converter power supply pin Use this pin at the same voltage as Vss.
62			

*:DIP-64P-M01

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A	Standby control signal	- At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
B	$\square \square$	
C		- At an output pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ - CMOS hysteresis input
D		- CMOS output
E		- N-ch open-drain output - CMOS hysteresis input - The interrupt input is with a noise canceller.
F		- CMOS output - CMOS hysteresis input

MB89143A/144A

(Continued)

Type	Circuit	Remarks
G		- P-ch high-voltage open-drain output
H		- CMOS output - CMOS hysteresis input - Pull-up resistor optional (Only for P14 to P17 and P32 to P37)
1	Hysteresis input with noise canceller	- CMOS output - CMOS hysteresis input - The interrupt input is with a noise canceller.
J		- The oscillation feedback resistor is not provided. - CMOS hysteresis input when subclock is not used

MB89143A/144A

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than $\mathrm{V}_{\text {cc }}$ or lower than $\mathrm{V}_{\text {ss }}$ is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between V_{cc} and V ss. (However, up to 7.0 V can be applied to P31/INT1 pin, regardless of Vcc.)

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVR) and analog input from exceeding the digital power supply ($\mathrm{V} c \mathrm{c}$) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be $A V$ ss $=A V R=V$ ss even if the A / D and D / A converters are not in use .

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Fluctuations

Although $V_{c c}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations ($\mathrm{P}-\mathrm{P}$ value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset and wake-up from stop mode.

MB89143A/144A

BLOCK DIAGRAM

Note: The A/D converter is an 8-bit, 8-channel type.

MB89143A/144A

CPU CORE

1. Memory Space

The microcontrollers of the MB89143A/144A series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89143A/144A series is structured as illustrated below.

MB89143A/144A

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:
Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used.
Index register (IX): A 16-bit register for index modification
Extra pointer (EP): A 16-bit pointer for indicating a memory address
Stack pointer (SP):
A 16-bit register for indicating a stack area
Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register

MB89143A/144A

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-Iow
0	0	1	High
0	1		\vdots
1	0	2	
1	1	3	Low $=$ no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

MB89143A/144A

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89143A/144A. The bank currently in use is indicated by the register bank pointer (RP).

Register Bank Configuraiton

This address $=0100 \mathrm{H}+8 \times(\mathrm{RP})$

MB89143A/144A

I/O MAP

Address	Read/write	Register name	Register description
00н	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04	(R/W)	PDR2	Port 2 data register
05			Vacancy
06н			Vacancy
07	(R/W)	SYCC	System clock control register
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTE	Watchdog timer control register
ОАн	(R/W)	TBCR	Time-base timer control register
0 BH	(R/W)	WPCR	Watch prescaler control register
$0 \mathrm{CH}_{\mathrm{H}}$	(R/W)	PDR3	Port 3 data register
ODн	(W)	DDR3	Port 3 data direction register
ОЕн	(R/W)	BUZR	Buzzer register
$\mathrm{OFH}_{\mathrm{H}}$	(R/W)	EIC	External interrupt control register
10H	(R/W)	PDR4	Port 4 data register
11н	(R/W)	PDR5	Port 5 data register
12н	(R/W)	PDR6	Port 6 data register
13н	(R)	PDR7	Port 7 data register
14H			Vacancy
15 H			Vacancy
16 ${ }^{\text {H}}$			Vacancy
17H			Vacancy
18H	(R/W)	T3CR	Timer 3 control register
19н	(R/W)	T2CR	Timer 2 control register
1 Ан $^{\text {¢ }}$	(R/W)	T3DR	Timer 3 data register
1 BH	(R/W)	T2DR	Timer 2 data register
1 CH	(R/W)	SMR	Serial mode register
1D ${ }_{\text {H }}$	(R/W)	SDR	Serial data register
1Ен	(R/W)	ADC1	A/D converter control register 1
1 FH	(R/W)	ADC2	A/D converter control register 2

(Continued)

MB89143A/144A

(Continued)

Address	Read/write	Register name	Register description
20н	(R/W)	ADDH	A/D data register (H)
21H	(R/W)	ADDL	A/D data register (L)
22 H	(W)	PCR0	Port input control register 0
23н	(W)	PCR1	Port input control register 1
24- to 7Вн			Vacancy
7 CH	(W)	ILR1	Interrupt level setting register 1
7D	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7F			Vacancy

Note: Do not use vacancies.

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	$\begin{array}{\|l\|} \hline \mathrm{V} c \mathrm{c} \\ \text { AVR } \end{array}$	Vss -0.3	Vss +7.0	V	AVR $\leq \mathrm{Vcc}+0.3^{* 1}$
Input voltage	V_{11}	Vss -0.3	$\mathrm{Vcc}+0.3$	V	$\begin{aligned} & \text { P00 to P07, P10 to P17, P30, } \\ & \text { P32 to P37, P70, P71 } \end{aligned}$
	V_{12}	Vss -0.3	7	V	P31
	V_{13}	Vcc - 40	$\mathrm{Vcc}+0.3$	V	$\begin{aligned} & \text { P40 to P47, P50 to P57, } \\ & \text { P60 to P67, BZ } \end{aligned}$
Output voltage	Vo1	Vss -0.3	$\mathrm{Vcc}+0.3$	V	P00 to P07, P10 to P17, P20 to P23, P30 to P37
	Vo2	-	$\mathrm{Vcc}+0.3$	V	$\begin{aligned} & \text { P40 to P47, P50 to P57, } \\ & \text { P60 to P67, BZ }{ }^{2} \end{aligned}$
"H" level total maximum output current	Σ Іон	-	-100	mA	
"H" level total average output current	Elohav	-	-75	mA	Averge value (operating current \times operation rate)
"H" level maximum output current	Іон	-	-12	mA	P00 to P07, P30, P32 to P37, P10 to P17, P20 to P23
"H" level average output current	Iohav	-	-6		Average value (operating current \times operation rate)
"H" level maximum output current	Іон	-	-20	mA	$\begin{aligned} & \text { P40 to P47, P50 to P57, } \\ & \text { P60 to P67, BZ } \end{aligned}$
" H " level average output current	Iohav	-	-10		Average value (operating current \times operation rate)
"L" level total maximum output current	Elo	-	50	mA	
"L" level total average output current	Elolav	-	30	mA	Average value (operating current \times operation rate)
"L" level maximum output current	lot	-	12	mA	P00 to P07, P10 to P17, P20 to P23, P30 to P37
"L" level average output current	lolav	-	6		
Power consumption	Po	-	470	mW	SDIP64 : DIP-64P-M01
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: Take care so that AVR does not exceed $\mathrm{V} \mathrm{cc}+0.3 \mathrm{~V}$ and V cc , such as when power is turned on.
*2: V_{I} and V_{0} must not exceed $V c c+0.3 \mathrm{~V}$.
Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MB89143A/144A

2. Recommended Operating Conditions

$(\mathrm{AV} \mathrm{ss}=\mathrm{V} s=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	V cc	4.0*	6.0*	V	Normal operation assurance range* at highest gear speed
		3.5*	6.0*	V	Normal operation assurance range* at highest gear speed
		2.5	6.0	V	When in watch mode or subclock operation mode
		1.5	6.0	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	0.0	Vcc	V	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

*: These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1 and " 5 . A/D Converter Electrical Characteristics."

Main clock operating frequency (at an instruction cycle of $4 / \mathrm{FcH})(\mathrm{MHz})$

Figure 1 Operating Voltage vs. Main Clock Operating Frequency
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of $4 /$ Fch.
Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

MB89143A/144A

3. DC Characteristics

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	V ${ }_{\text {нS }}$	P00 to P07, P10 to P17, P30 to P37, P70, P71, X0, $\overline{R S T}$, X1, MODA	-	0.8 Vcc	-	V cc +0.3	V	
"L" level input voltage	Vıls	P00 to P07, P10 to P17, P30 to P37, P70, P71, X0, $\overline{\mathrm{RST}}$, X1, MODA	-	Vss -0.3	-	0.2 Vcc	V	
Open-drain output pin application voltage	V ${ }_{\text {1 }}$	P31	-	Vss -0.3	-	7.0	V	
"H" level output voltage	Vori	P00 to P07, P10 to P17, P20 to P23, P30 to P37	$\mathrm{loн}=-2.0 \mathrm{~mA}$	2.4	-	-	V	Except P31
	Vон2	P40 to P47, P50 to P57, P60 to P67	$\mathrm{I} \mathrm{O}=-10 \mathrm{~mA}$	3.0	-	-	V	
"L" level output voltage	Vol1	P00 to P07, P10 to P17, P20 to P23, P30 to P37	$\mathrm{loL}=1.8 \mathrm{~mA}$	-	-	0.4	V	
	VoL2	RST	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.6	V	
Input leakage current	Lı1	P00 to P07, P10 to P17, P30 to P37, P70, P71	$0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$	-	-	± 5	$\mu \mathrm{A}$	Except pins with pull-up resistor
	Lı12	P14 to P17, P32 to P37	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	-200	-100	-50	$\mu \mathrm{A}$	Only for pins with pull-up resistor
Output leakage current	ILo1	$\begin{aligned} & \text { P40 to P47, } \\ & \text { P50 to P57, } \\ & \text { P60 to P67 } \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}-35 \mathrm{~V}$	-	-	-10	$\mu \mathrm{A}$	
Pull-up resistance	Rpull	$\overline{\mathrm{RST}}$, P14 to P17, P32 to P37	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$	
Power supply current	Icca	V cc	$\begin{aligned} & \mathrm{F} \mathrm{CH}=8 \mathrm{MHz}, \\ & \mathrm{~V} \mathrm{cc}=5.0 \mathrm{~V}, \\ & \text { tinst }=0.5 \mu \mathrm{~s}, \end{aligned}$ when A / D conversion is stopped	-	9	15	mA	

(Continued)

MB89143A/144A

(Continued)
$\left(\mathrm{AVR}=\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \mathrm{AV} s \mathrm{ss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current	Icc2	Vcc	$\begin{aligned} & \mathrm{FcH}=8 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{cc}}=3.5 \mathrm{~V}, \\ & \mathrm{t} \text { tins }=8.0 \mu \mathrm{~s}, \end{aligned}$ when A / D conversion is stopped	-	1.5	2	mA	
	Iccs 1		$\begin{array}{c\|c} & \mathrm{FcH}_{\mathrm{cH}}=8 \mathrm{MHz} \\ \hline 0 & V_{\mathrm{cc}}=5.0 \mathrm{~V} \\ \mathrm{~B} & \mathrm{tinst}=0.5 \mu \mathrm{~s} \end{array}$	-	3	7	mA	
	Iccs2			-	1	1.5	mA	
	Iccı		$\begin{aligned} & \mathrm{FcL}=32.768 \mathrm{kHz} \\ & \mathrm{Vcc}=3.0 \mathrm{~V} \\ & \text { Subclock mode } \end{aligned}$	-	50	150	$\mu \mathrm{A}$	
	Icals		$\begin{aligned} & \mathrm{FcL}=32.768 \mathrm{kHz} \\ & \mathrm{Vcc}=3.0 \mathrm{~V} \\ & \text { Subclock mode } \end{aligned}$	-	25	50	$\mu \mathrm{A}$	
	Icct		$\begin{aligned} & \mathrm{F}_{\mathrm{CL}}=32.768 \mathrm{kHz} \\ & \mathrm{~V} \mathrm{CC}=3.0 \mathrm{~V} \end{aligned}$ - Watch mode - Main clock stop mode at dual-clock system	-	3	15	$\mu \mathrm{A}$	
	Іcch		$\begin{aligned} & \mathrm{F}_{\mathrm{CL}}=32.768 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$ - Subclock stop mode - Main clock stop mode at single-clock system	-	-	10	$\mu \mathrm{A}$	
	Icca		$\begin{aligned} & \mathrm{F} \mathrm{FH}=8 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{tinst}^{2}=0.5 \mu \mathrm{~s}, \end{aligned}$ when A/D conversion is activated	-	11.5	19.5	mA	When the gear function is used, the power supply current varies with the measurement point.
	IR	AVR	$\begin{aligned} & \mathrm{F} \mathrm{CH}=8 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \end{aligned}$ when A / D conversion is activated	-	200	-	$\mu \mathrm{A}$	
	Irh		$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=8 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \end{aligned}$ when A / D conversion is stopped	-	-	10	$\mu \mathrm{A}$	
Input capacitance	Cin	Other than AVss, AVR, Vcc, and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

Note: The power supply current is measured at the external clock.

MB89143A/144A

4. AC Characteristics

(1) Reset Timing

Parameter	Symbol	Condition	Value			Unit	Remarks
			Min.	Typ.	Max.		
RST "L" pulse width	tzızH	-	16 txcyL	-	-	ns	
RST noise limit width	tzınc	-	20	40	60	ns	

Note: txcyL is the oscillation cycle ($1 / \mathrm{F}_{\mathrm{CH}}$) to input to the X 0 pin.

(2) Power-on Reset

Parameter			$\left(\mathrm{AVss}=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$			
	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	t_{R}	-	-	50	ms	Power-on reset function only
Power supply cut-off time	tofF	-	1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

MB89143A/144A

(3) Clock Timing

Parameter	Symbol							
		Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Clock frequency	Fch	X0, X1	-	2	-	8	MHz	
	FcL	X0A, X1A	-	-	32.768	-	kHz	
Clock cycle time	txcyL	X0, X1	-	125	-	500	ns	
	tıxCyL	X0A, X1A	-	-	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	$\begin{array}{\|l\|} \hline \mathrm{P}_{\mathrm{wH}} \\ \mathrm{P}_{\mathrm{wL}} \end{array}$	X0	-	30	-	-	ns	External clock
	Pwhi Pwle	X0A	-	-	15.2	-	ns	
Input clock rising/ falling time	$\begin{aligned} & \hline \begin{array}{l} \text { tcR } \\ \text { tč } \end{array} \\ & \hline \end{aligned}$	X0, X0A	-	-	-	10	ns	External clock

X0 and X1 Timings and Conditions

Main Clock Conditions

X0A and X1A Timings and Conditions

Subclock Conditions

Note: The subclock oscillator feedback resistor is connected externally in dual-clock products.
(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle time	tinst	4/Fсн, 8/Fсн, 16/Fсн, 32/Fсн	$\mu \mathrm{s}$	$\left(4 / \mathrm{F}_{\mathrm{CH}}\right)$ tinst $=0.5 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CH}}=$ 8 MHz
		2/Fcı	$\mu \mathrm{s}$	tinst $=61.036 \mu$ s when operating at $\mathrm{FcL}=$ 32.768 kHz

Note: When operating at 8 MHz , the cycle varies with the set execution time.

MB89143A/144A

(5) Serial I/O timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		1/2 tins**	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tsHSL	SCK	External shift clock mode	1 tinst*	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsısh	SCK		1 tins**	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		1/2 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	

*: For information on tinst, see "(4) Instruction Cycle."

Internal Shift Clock Mode

External Shift Clock Mode

MB89143A/144A

(6) Peripheral Input Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Peripheral input " H " pulse width 1	tııн1	EC, ADST, INTO to INT1	-	2 tinst	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	thwll	EC, ADST, INTO to INT1	-	2 tinst	-	$\mu \mathrm{S}$	

(7) Peripheral Input Noise Limit Width

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min.	Typ.	Max.		
Peripheral input " H " level noise limit width 1	tinnc1	INT1, INT0	50	100	250	ns	
Peripheral input "L" level noise limit width 1	tınc1	INT1, INT0	50	100	250	ns	

Note: The minimum values is always canceled, while values over the maximum value are not canceled.

INT0, INT1

MB89143A/144A

5. A/D Converter Electrical Characteristics

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}\right.$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~F}_{\mathrm{ch}}=8 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$								
Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Resolution	-	-	-	-	-	8	bit	
Total error	-	-	-	-	-	± 3.0	LSB	
Linearity error	-	-	-	-	-	± 1.0	LSB	
Differential linearity error	-	-	-	-	-	± 0.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	-	AVss - 1.5 LSB	AV ss + 0.5 LSB	AVss + 2.5 LSB	mV	
Full-scale transition voltage	V $\mathrm{FST}^{\text {t }}$	AN0 to AN7	-	AVR - 3.5 LSB	AVR - 1.5 LSB	AVR + 0.5 LSB	mV	
Interchannel disparity	-	-	-	-	-	1.0	LSB	
A/D conversion time	-	-	-	-	44 tinst	-	$\mu \mathrm{s}$	
Sense mode conversion time	-	-	-	-	12 tinst	-	$\mu \mathrm{s}$	
Analog port input current	Iain	AN0 to AN7	$\begin{aligned} & \mathrm{AVR}= \\ & \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \end{aligned}$	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	-	AN0 to AN7	-	0	-	AVR	V	
Reference voltage	-	AVR	-	4.5	-	Vcc	V	
Reference-voltage supply current	IR	AVR	$\mathrm{AVR}=5.0 \mathrm{~V}$	-	200	-	$\mu \mathrm{A}$	

Notes: - The smaller the | AVR - AVss |, the greater the error would become relatively.

- The output impedance of the external circuit for the analog input must satisfy the following conditions: Output impedance of the external circuit < Approx. $10 \mathrm{k} \Omega$ If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time $=22 \mu \mathrm{~s}$ at 8 MHz oscillation).

Analog Input Equivalent Circuit

MB89143A/144A

6. A/D Glossary

- Resolution

Analog changes that are identifiable with the A/D converter

- Linearity error

The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1111" $\leftrightarrow " 1111$ 1110") from actual conversion characteristics

- Differential linearity error

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error

The difference between actual and theoretical value
This error is caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise.

MB89143A/144A

INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

MB89143A/144A

(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri $(8$ bits, $\mathrm{i}=0$ to 7$)$
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
$((\times))$	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic:	Assembler notation of an instruction
\sim	Number of instructions
$\#:$	Number of bytes
Operation:	Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:
-"-" indicates no change.

- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH immediately before the instruction is executed.
- 00 becomes 00 .
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.
OP code: \quad Code of an instruction. If an instruction is more than one code, it is written according to the following rule:
Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$($ dir $) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) + off $) \leftarrow(\mathrm{A})$	-	-	-	----	46
MOV ext,A	4	3	$($ ext $) \leftarrow(A)$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(\mathrm{A})$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(A) \leftarrow d 8$	AL	-	-	+ + --	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ + - -	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(\mathrm{IX})+\text { off })\end{array}\right.$	AL	-	-	+ + - -	06
MOV A,ext	4	3	$(\mathrm{A}) \leftarrow$ (ext)	AL	-	-	+ + - -	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow((\mathrm{A})$)	AL	-	-	+ + - -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP}))$	AL	-	-	+ + - -	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	(dir) \leftarrow d8	-	-	-	----	85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$((E P)) \leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri,\#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-	----	88 to 8F
MOVW dir,A	4	2	$($ dir $) \leftarrow(\mathrm{AH}),($ dir +1$) \leftarrow(\mathrm{AL})$	-	-	-		D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$($ ext $) \leftarrow(A H),($ ext + 1$) \leftarrow(A L)$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(E P) \leftarrow(A)$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(\mathrm{A}) \leftarrow \mathrm{d} 16$	AL	AH	dH	+ + - -	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow($ dir $),(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ + - -	C5
MOVW A,@IX +off	5	2	$(\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off})$, $(\mathrm{AL}) \leftarrow((\mathrm{IX})+\mathrm{off}+1)$	AL	AH	dH	+ + -	C6
MOVW A, ext	5	3	$(\mathrm{AH}) \leftarrow($ ext $),(\mathrm{AL}) \leftarrow($ ext +1$)$	AL	AH	dH	+ + - -	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{A})$, , (AL) $\leftarrow((\mathrm{A}) \mathrm{l}+1)$	AL	AH	dH	+ +--	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP}),(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ + - -	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A		1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	----	E2
MOVW A,IX		1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A		1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP		1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3	1	$($ (A$) \mathrm{)} \leftarrow(\mathrm{~T})$	-	-	-	----	82
MOVW @A,T	4	1	$($ (A) $) \leftarrow$ (TH), $($ (A$)+1) \leftarrow(\mathrm{TL})$	-	-	-		83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-	----	E6
MOVW A,PS	2	,	$(\mathrm{A}) \leftarrow(\mathrm{PS})$	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow$ (A$)$	-	-	-	+ + + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-		E5
SWAP		1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, ${ }^{\text {, }}$	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	(A) $\leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP		1	(A) $\leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: - During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+\mathrm{d} 8+\mathrm{C}$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+($ dir $)+\mathrm{C}$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{IX})+$ off $)+\mathrm{C}$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{EP})+\mathrm{C}$	-	-	-	+ +	27
ADDCW A	3	1	$(A) \leftarrow(A)+(T)+C$	-	-	dH	+ + + +	23
ADDC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+\mathrm{C}$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{Ri})-\mathrm{C}$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(A) \leftarrow(A)-d 8-C$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ dir $)-\mathrm{C}$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	(A) $\leftarrow(\mathrm{A})-((\mathrm{IX})+$ off $)-\mathrm{C}$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-((E P))-C$	-	-	-	+ + + +	37
SUBCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{T})-(\mathrm{A})-\mathrm{C}$	-	-	dH	+ + + +	33
SUBC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{TL})-(\mathrm{AL})-\mathrm{C}$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + + -	C8 to CF
INCW EP	3	1	$(\mathrm{EP}) \leftarrow(\mathrm{EP})+1$	-	-	-		C3
INCW IX	3	1	(IX) \leftarrow (IX) +1	-	-	-	----	C2
INCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+1$	-	-	dH	+ +	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	+ + + -	D8 toDF
DECW EP	3	1	$(E P) \leftarrow(E P)-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+	D0
MULU A	19	1	$(A) \leftarrow(A L) \times(T L)$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	----	11
ANDW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge(\mathrm{T})$	-	-	dH	+ + R -	63
ORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \vee(\mathrm{T})$	-	-	dH	+ + R -	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	+ + R -	53
CMP A	2	1	(TL) - (AL)	-	-	-	+ + + +	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\rightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + - +	03
ROLC A	2	1	$\square \mathrm{C} \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ +-+	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) - ((EP))	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) + off	-	_	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2		$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	+ + R -	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	+ + R -	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall($ dir $)$	-	-	-	+ + R -	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	+ + R -	57
XOR A,@IX +off		2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	+ + R -	58 to 5F
AND A	2		$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	+ + R -	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{ALL}) \wedge \mathrm{d} 8$	-	-	-	+ + R -	64
AND A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ dir $)$	-	-	-	+ + R -	65

(Continued)

MB89143A/144A

(Continued)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ (EP))	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{X})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{TL})$	-	-	-	+ + R -	72
OR A, \#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee \mathrm{d} 8$	-	-	-	+ + R -	74
OR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{dir})$	-	-	-	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow(A L) \vee((E P))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) +off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	--- -	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZ VC	OP code
BZ/BEQ rel	3	2	If $\mathrm{Z}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FD
BNZ/BNE rel	3	2	If $\mathrm{Z}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $V \forall N=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	-+--	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) $=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	-+--	B8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-	----	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	----	50
PUSHW IX	4	1		-	-	-	---	41
POPW IX	4	1		-	-	-	---	51
NOP	1	1		-	-	-	----	00
CLRC	1	1		-	-	-	$---R$	81
SETC	1	1		-	-	-	---	91
CLRI	1	1		-	-	-	----	80
SETI			-	-	---	90		

MB89143A/144A

INSTRUCTION MAP

L H	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	NOP	SWAP	RET	RETI	PUSHW A	POPW A	MOV A,ext	MOVW A,PS	CLRI	SETI	$\begin{aligned} & \text { CLRB } \\ & \quad \text { dir: } 0 \end{aligned}$	$\begin{aligned} & \text { BBC } \\ & \text { dir: } 0, \text { rel } \end{aligned}$	INCW A	$\begin{array}{r} \text { DECW } \\ \text { A } \end{array}$	JMP @A	MOVW A,PC
1	MULU A	DIVU A	JMP addr16	CALL addr16	PUSHW IX	POPW IX	MOV ext,A	$\begin{aligned} & \text { MOVW } \\ & \text { PS,A } \end{aligned}$	CLRC	SETC	CLRB dir: 1	BBC dir: 1,rel	INCW SP	$\begin{array}{r} \text { DECW } \\ \text { SP } \end{array}$	$\begin{array}{\|} \mathrm{MOVW} \\ \mathrm{SP}, \mathrm{~A} \end{array}$	MOVW A,SP
2	ROLC A	CMP A	ADDC	SUBC A	$\begin{array}{r} \mathrm{XCH} \\ \mathrm{~A}, \mathrm{~T} \end{array}$	XOR A	AND A	OR A	MOV @A,T	MOV A,@A	CLRB dir: 2	BBC dir: 2,rel	INCW IX	$\begin{gathered} \text { DECW } \\ \text { IX } \end{gathered}$	$\underset{\text { IX,A }}{\text { MOVW }}$	MOVW A,IX
3	RORC A	CMPW A	ADDCW A	SUBCW A	$\begin{array}{r} \text { XCHW } \\ \text { A, } \mathrm{T} \end{array}$	XORW A	ANDW A	ORW A	MOVW @A,T	MOVW A,@A	CLRB dir: 3	BBC dir: 3,rel	INCW EP	$\begin{array}{r} \text { DECW } \\ \text { EP } \end{array}$	$\begin{array}{\|} \text { MOVW } \\ \text { EP,A } \end{array}$	MOVW A,EP
4	MOV A,\#d8	CMP A,\#d8	$\begin{aligned} & \text { ADDC } \\ & \text { A,\#d8 } \end{aligned}$	SUBC A,\#d8		$\begin{aligned} & \text { XOR } \\ & \text { A,\#d8 } \end{aligned}$	AND A,\#d8	OR A,\#d8	DAA	DAS	$\begin{aligned} & \text { CLRB } \\ & \quad \text { dir: } 4 \end{aligned}$	BBC dir: 4, rel	MOVW A,ext	$\begin{gathered} \text { MOVW } \\ \text { ext,A } \end{gathered}$	$\begin{gathered} \text { MOVW } \\ \text { A,\#d16 } \end{gathered}$	$\begin{array}{r} \mathrm{XCHW} \\ \mathrm{~A}, \mathrm{PC} \end{array}$
5	MOV A,dir	CMP A,dir	ADDC A,dir	$\begin{array}{\|c\|} \hline \text { SUBC } \\ \text { A,dir } \end{array}$	$\underset{\text { dir,A }}{\mathrm{MOV}}$	$\begin{aligned} & \text { XOR } \\ & \text { A,dir } \end{aligned}$	AND A,dir	OR A,dir	MOV dir,\#d8	CMP dir,\#d8	CLRB $\operatorname{dir}: 5$	BBC dir: 5,rel	MOVW A,dir	$\underset{\text { dir,A }}{\mathrm{MOVW}}$	MOVW SP,\#d16	XCHW A,SP
6	MOV A,@IX +d	$\begin{aligned} & \text { CMP } \\ & \text { A,@IX +d } \end{aligned}$	ADDC A,@IX +d	$\begin{array}{\|l\|} \hline \text { SUBC } \\ \text { A,@IX +d } \end{array}$	$\begin{aligned} & \text { MOV @IX } \\ & +\mathrm{d}, \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { XOR } \\ & \text { A,@IX +d } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { AND } \\ \text { A,@IX +d } \end{array}$	$\begin{aligned} & \text { OR } \\ & \text { A,@IX +d } \end{aligned}$	MOV @IX +d,\#d8	CMP @IX +d,\#d8	$\begin{aligned} & \text { CLRB } \\ & \quad \text { dir: } 6 \end{aligned}$	BBC dir: 6,rel	MOVW A,@IX+d	MOVW @IX +d,A	MOVW IX,\#d16	XCHW A,IX
7	MOV A,@EP	CMP A,@EP	$\begin{aligned} & \text { ADDC } \\ & \text { A,@EP } \end{aligned}$	SUBC A,@EP	MOV @EP,A	$\begin{aligned} & \text { XOR } \\ & \text { A,@EP } \end{aligned}$	AND A,@EP	OR A,@EP	MOV @EP,\#d8	CMP @EP,\#d8	CLRB dir: 7	BBC dir: 7,rel	MOVW A,@EP	MOVW @EP,A	MOVW EP,\#d16	XCHW A,EP
8	$\begin{array}{r} \mathrm{MOV} \\ \mathrm{~A}, \mathrm{RO} \end{array}$	CMP A, RO	$\begin{gathered} \text { ADDC } \\ \text { A,RO } \end{gathered}$	SUBC A,R0	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{RO}, \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A}, \mathrm{RO} \end{aligned}$	AND A,R0	OR A,RO	$\begin{aligned} & \text { MOV } \\ & \text { R0,\#d8 } \end{aligned}$	CMP R0,\#d8	SETB dir: 0	BBS dir: 0,rel	INC R0	DEC	CALLV \#0	BNC rel
9	MOV A,R1	CMP A,R1	$\begin{aligned} & \text { ADDC } \\ & \text { A,R1 } \end{aligned}$	$\begin{array}{\|r\|} \hline \text { SUBC } \\ \text { A,R1 } \end{array}$	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{R} 1, \mathrm{~A} \end{aligned}$	$\begin{array}{\|l} \text { XOR } \\ \text { A,R1 } \end{array}$	AND A,R1	OR A,R1	MOV R1,\#d8	CMP R1,\#d8	SETB dir: 1	BBS dir: 1,rel	INC R1	$\mathrm{DEC}_{\mathrm{R} 1}$	CALLV \#1	BC
A	MOV A,R2	CMP A,R2	$\begin{aligned} & \mathrm{ADDC} \\ & \mathrm{~A}, \mathrm{R} 2 \end{aligned}$	SUBC A,R2	MOV $\mathrm{R} 2, \mathrm{~A}$	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A}, \mathrm{R} 2 \end{aligned}$	AND A,R2	OR A,R2	MOV R2,\#d8	CMP R2,\#d8	SETB dir: 2	BBS dir: 2,rel	INC R2	$\mathrm{DEC}_{\mathrm{R}}$	CALLV \#2	BPrer rel
B	MOV A,R3	CMP A,R3	$\begin{aligned} & \text { ADDC } \\ & \text { A,R3 } \end{aligned}$	$\begin{array}{\|r\|} \hline \text { SUBC } \\ \text { A,R3 } \end{array}$	$\begin{aligned} & \text { MOV } \\ & \text { R3,A } \end{aligned}$	$\begin{aligned} & \text { XOR } \\ & \text { A,R3 } \end{aligned}$	AND A,R3	OR A,R3	MOV R3,\#d8	CMP R3,\#d8	SETB dir: 3	BBS dir: 3,rel	INC R3	$\begin{array}{\|c\|} \hline \text { DEC } \\ \\ \text { R3 } \\ \hline \end{array}$	CALLV \#3	$\mathrm{BN}^{\text {rel }}$
C	MOV A,R4	CMP A,R4	$\begin{aligned} & \text { ADDC } \\ & \text { A,R4 } \end{aligned}$	SUBC A,R4	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{R} 4, \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A}, \mathrm{R} 4 \end{aligned}$	AND A,R4	OR A,R4	MOV R4,\#d8	CMP R4,\#d8	SETB dir: 4	BBS dir: 4, rel	INC R4	${ }^{\text {DEC }}$	CALLV \#4	BNZ rel
D	MOV A,R5	CMP A,R5	$\begin{aligned} & \text { ADDC } \\ & \text { A,R5 } \end{aligned}$	SUBC A,R5	MOV R5,A	$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A}, \mathrm{R} 5 \end{aligned}$	AND A,R5	$\begin{aligned} & \text { OR } \\ & \text { A,R5 } \end{aligned}$	MOV R5,\#d8	CMP R5,\#d8	SETB dir: 5	BBS dir: 5,rel	INC	$\mathrm{DEC}_{\mathrm{R} 5}$	CALLV \#5	BZ rel
E	MOV A,R6	CMP A,R6	$\begin{aligned} & \text { ADDC } \\ & \text { A,R6 } \end{aligned}$	SUBC A,R6	MOV R6,A	$\begin{aligned} & \text { XOR } \\ & \text { A,R6 } \end{aligned}$	AND A,R6	$\begin{aligned} & \text { OR } \\ & \text { A,R6 } \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { R6,\#d8 } \end{aligned}$	CMP R6,\#d8	SETB dir: 6	BBS dir: 6,rel	INC R6	$\mathrm{DEC}_{\mathrm{R6}}$	CALLV \#6	BGE rel
F	MOV A,R7	CMP A,R7	$\begin{aligned} & \text { ADDC } \\ & \text { A,R7 } \end{aligned}$	SUBC A,R7	$\underset{\text { R7,A }}{\mathrm{MOV}}$	$\begin{aligned} & \text { XOR } \\ & \text { A,R7 } \end{aligned}$	AND A,R7	$\begin{aligned} & \text { OR } \\ & \quad \text { A,R7 } \end{aligned}$	MOV R7,\#d8	CMP R7,\#d8	$\begin{aligned} & \text { SETB } \\ & \quad \text { dir: } 7 \end{aligned}$	BBS dir: 7,rel	INC R7	DEC R7	CALLV \#7	$\left\lvert\, \begin{array}{ll} \text { BLT } & \\ & \text { rel } \end{array}\right.$

MB89143A/144A

MASK OPTIONS

No.	Part number	MB89143A/144A	MB89PV140		MB89P147V1
	Specification method	Specify when ordering masking	101	102	Set in EPROM
1	Clock mode selection Single-clock mode Dual-clock mode	Can be set	Single clock	Dual clock	Can be set
2	Pull-up resistors P14 to P17, P32 to P37	Specify by pin	Without pullup resistor	Without pullup resistor	Can be set per pin
3	Power-on reset With Without	With power-on rest	With poweron reset	With poweron reset	Can be set
4	$\begin{aligned} & \text { Reset output } \\ & \text { With } \\ & \text { Without } \end{aligned}$	Can be set	With reset output	With reset output	Can be set
5	$\begin{aligned} & \text { Pull-down resistors } \\ & \left(\begin{array}{l} \text { P40 to P47 } \\ \text { P50 to P57 } \\ \text { P60 to P67 } \end{array}\right. \end{aligned}$	Without pull-down resistor	Without pulldown resistor	Without pulldown resistor	Without pull-down resistor

ORDERING INFORMATION

Part number	Package	Remarks
MB89143AP	64-pin Plastic SH-DIP	
MB89144AP	(DIP-64P-M01)	

MB89143A/144A

PACKAGE DIMENSIONS

64-pin Plastic SH-DIP
(DIP-64P-M01)

© 1994 FUJITSU LIMITED D64001S-3C-4
Dimensions in mm (inches)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3753
Fax: (044) 754-3329
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED No. 51 Bras Basah Road,
Plaza By The Park,
\#06-04 to \#06-07
Singapore 189554
Tel: 336-1600
Fax: 336-1609

All Rights Reserved.
Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.

F9606

© FUJITSU LIMITED Printed in Japan

[^0]: *:DIP-64P-M01

